CoSIR: Managing an Epidemic via Optimal Adaptive Control of Transmission Rate Policy

Epidemic Control via Transmission Restrictions

Shaping an epidemic with an **adaptive contact restriction policy** is a critical challenge for public health officials that requires exploration.

- Scenario-based forecasting methods are not well-suited for control because these only permit limited exploration of scenarios.
- Periodic lockdowns and RL techniques do not sufficiently exploit the mathematical structure of epidemic dynamics.
- Current economic epidemiological control formulations focus on impact modeling, but are not easily tractable.

Problem Statement: Given total population (N), current susceptible population (S_{curr}) , current infectious population (I_{curr}) , a set of restriction levels $(A = \{a_i\})$ and a time horizon (T), identify a restriction schedule $[a_t], [t]_{curr+1}^{curr+T}$, s.t. infectious levels average I_{avg}^{target} and do not exceed I_{max}^{target} .

Contributions

- Novel mapping between SIR dynamics and Lotka-Volterra (LV) system under a specific transmission rate policy (LVSIR).
- Derivation of optimal control policy for transmission rate (CoSIR) using control-Lyapunov functions (CLF) based on the "Lotka-Volterra energy".
- Practical control algorithm that combines the CoSIR policy with statistical estimation of other model parameters & approximation to discrete levels.
- Evaluation on COVID-19 data to demonstrate efficacy and adaptability.

Optimal Control of SIR via Mapping to LV System

Optimal control of epidemic, i.e., regulating infection levels in SIR system has a direct analogy with population control in LV systems.

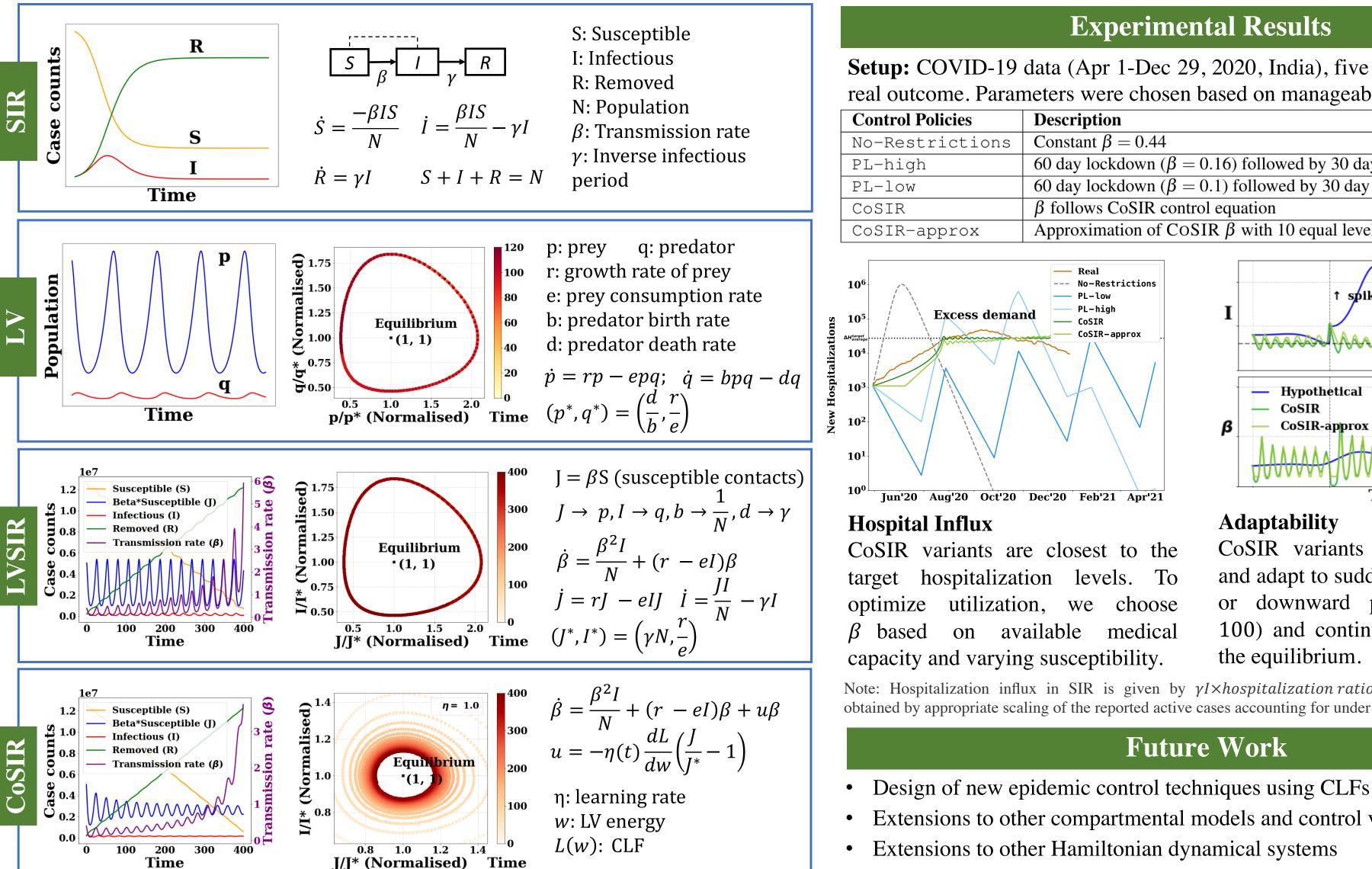
- Infectious population $(I) \leftrightarrow$ Predators (q): Inflow and outflow into infectious compartment are akin to birth and death of predators.
- Susceptible contacts $(\beta S) \leftrightarrow$ Prey (p): Susceptible contacts act as "nourishment" to infectious population.
- Exact equivalence requires a specific transmission rate β policy (LVSIR).

Control of non-linear dynamical systems often relies on control-Lyapunov functions. CoSIR follows a similar approach using "Lotka-Volterra energy".

Interpretation of CoSIR β -control policy:

- $\beta^2 I/N$: Relaxation due to the decreasing susceptibility
- $(r eI)\beta$: Stabilization but oscillatory behavior
- $u\beta$: Dissipation of energy and convergence to the equilibrium.

Harsh Maheshwari



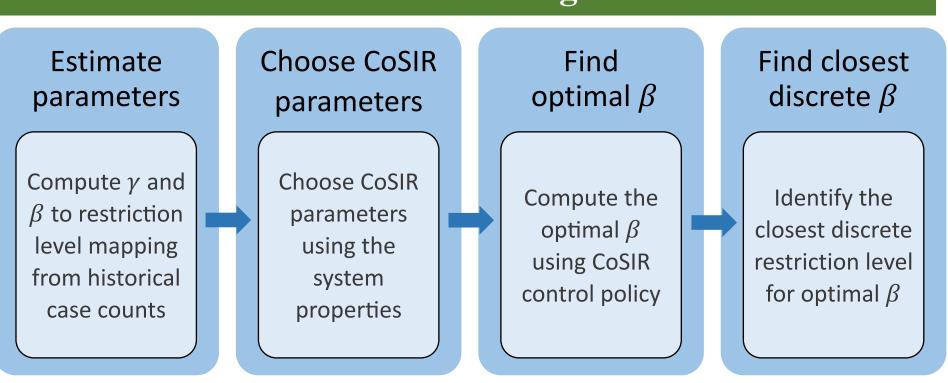
Nayana Bannur

Shreyas Shetty

Srujana Merugu Paper: https://doi.org/10.1101/2020.11.10.20211995 Webapp: cosir.herokuapp.com

Properties of LVSIR System

Stable equilibrium at $(J^*, I^*) = (\gamma N, r/e)$. • Initialization at equilibrium \Rightarrow constant (*J*, *I*) and linear *S*, *R*. • Initial state different from equilibrium \Rightarrow cyclic behaviour. • LV system "energy" $w(J, I) = \gamma(x - \log(x) - 1) + r(y - \log(y) - 1)$ remains constant where $x = I/I^*$, $y = I/I^*$. • *I* and *J* curves exhibit periodic oscillations resulting in a closed phase plot with extrema { $(x_{min}, 1), (1, y_{min}), (x_{max}, 1), (1, y_{max})$ } where (x_{min}, x_{max}) and (y_{min}, y_{max}) satisfy $x - \log(x) = 1 + w_0 \gamma$ and $y - \log(y) = 1 + \frac{w_0}{r}$ respectively. • In each cyclic period, S reduces by a fixed amount $\Delta S = \gamma IT_{period}$.



rear outcome. I arameters		
	Control Policies	Descr
	No-Restrictions	Const
	PL-high	60 day
	PL-low	60 day
	CoSIR	β foll
	CoSIR-approx	Appro

Note: Hospitalization influx in SIR is given by $\gamma I \times hospitalization ratio$, Real hospitalizations are obtained by appropriate scaling of the reported active cases accounting for under reporting

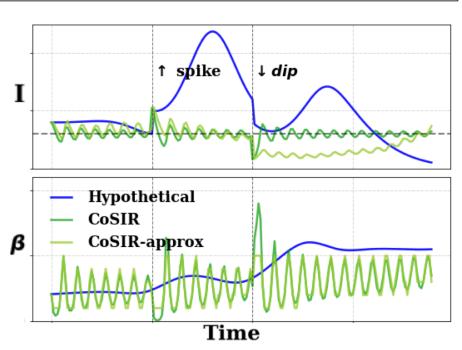
Practical Control Algorithm

Experimental Results

Setup: COVID-19 data (Apr 1-Dec 29, 2020, India), five control policies and real outcome. Parameters were chosen based on manageable hospital inflow.

ay lockdown ($\beta = 0.16$) followed by 30 day relaxation ($\beta = 0.44$) y lockdown ($\beta = 0.1$) followed by 30 day relaxation ($\beta = 0.44$) lows CoSIR control equation

oximation of COSIR β with 10 equal levels from 0.1 to 0.55



Adaptability

CoSIR variants stabilize infections and adapt to sudden upward (t = 50) or downward perturbations (t =100) and continue pushing towards the equilibrium.

Future Work

Extensions to other compartmental models and control variables